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ABSTRACT 

This work addresses the tleveloynieiit of water cooled siipersonic proljes used t o  st udy 

high temperature jet plumes. These probes are: total pressure, static pressure, and total 

temperature. The iiiotivation for these experinients is the deteriiiiiiation of high tempera- 

ture supersonic jet mean flow properties. 

A 3.54 in. exit diameter water cooled nozzle was used in the tests. It is designed for 

exit Mach 2 at 2000°F exit total temperature. Tests were conducted using water cooled 

probes capable of operating in Mach 2 flow, up to 2000°F total temperature. Of the two 

designs tested, an annular cooling method was chosen as superior. 

Data at the jet exit planes, and along tlie jet centerline, were obtained for total tem- 

peratures of 900"F, 1500"F, and 2000"F, for each of the probes. The data obtained from 

the total and static pressure probes are consistent with prior low teinperat ure results. 

IIowever, the data obtained from the total temperature probe was affected by the water 

coolant. The total temperature probe was tested up to 2000°F with, aricl without, the 

cooling system turned on to better understand the heat transfer process at the tliermo- 

couple bead. The rate of lieat transfer across the thermocouple bead was greater when the 

coolant was turned on than when the coolant was turned off. This accounted for tlie lower 

temperature measurement by the cooled probe. The analysis is presented in this paper. 

The velocity and Mach number at the exit plane and centerline locations were deterinined 

froiii tlie Rayleigli-Pitot Tulw forniula. 

INTRODUCTION 

Interest in the flow properties of high temperature supersonic jet plumes has increased 

over the years, and serves as the niotivatioii for iiieasuriiig hot jet iiiean flow properties 

in these experiments. A knowledge of these iiieaxi flow properties aids the prediction of 

jet noise and may guide concepts for reductio11 of the jet noise. Instability waves are 

the primary noise generators for perfectly expanded supersonic jets[ 1,2 ,3 ,4] .  Theoret,ical 
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models that are used to predict amplitudes for Kelvin-Helniholtz iiist ability waves thus far 

require empirical inpii t. for mean jet flow properties. 

Extensive mean flow measurements have been acquired in the NASA/LaRC Jet Noise 

Laboratory (JNL) using specially designed pressure and temperature probes for measure- 

ment with unheated supersoiiic jets with exit Mach riumbers to 2.5. Seiner, Dash, and 

Wolf[5J have shown that good agreement exists between measured unheated jet flow prop- 

erties and those predicted nunierically. Hot., supersonic jet data has also been acquired in 

tlie JNL. In these studies jet temperatures to 900" F have been measured using uncooled 

probes and support wings. At  tlie time, the 900°F jet total temperature represented the 

niaxiriiuin attainable with tlie electric heat, supply in tlie JNL.  This teiiiperat,ure also cor- 

responds to an upper practical limit for uncooled probes and support wings made from 

coininoil ancl readily available materials. The iiiaxiniuiii available temperature range has 

recently, however, been extended to 3000°F with tlie installation of a STJE propane burner 

in the JNL. 

This research effort was initiated to deteriiiiiie if a satisfactory design coiilcl be found to 

extend the present uncooled probe measurement. technology into the elevated teniperature 

range by utilizing water cooling techiiicpes and high temperature materials ieclinology. 

Tliis paper describes a research effort to develop such technology for measurenient of 

static ancl total pressures, and total temperature in supersonic Mach 2 flows heated to 

2000°F. Througliout this paper, the total temperature at  the nozzle exit is refered to as 

tlie jet teiiiperature, and tlie Mach number at the exit as the jet. Mach number. 

Tlie experiiiierits were conducted in t h e e  phases. Phase 1 was to develop and test. the 

water cooled probe concept. The total pressure probe was used in this phase because it has 

the simplest internal geometry of tlie three probes. Two total pressure probes were h i l t  

and tested to determine wliich of the two designs best, cools the probes. Tlie two designs 

are: the unsyniiiietric four t,uhe cooling design, illustrated in figure 1, ancl the symmetric 

annular cooling design, illust,rated in figure 2. Phase 2 utilized the most eficient cooling 
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design, determined from phase 1, in tlie production and testing of all t.lie probes. Total 

pressure, static pressure, arid total temperature data were taken along tlie jet ceiiterlirie, 

and along tlie exit planes. Tlie centerline readings begin at 0.051 nozzle diameters and 

extend to 23.4 nozzle diameters from tlie jct. exit. Tlie exit plane data ext,end radially 

from tlie jet centerline out to 0.56 nozzle dianieters. A full set of da.ta was collected for 

jet temperatures of 900"F, 1500"F, and 2000°F. Phase 3 was devoted to observing the 

temperature distribution along the total temperature probe surface. A high resolution 

infrared system was used to accomplish this. 

PROBE ANALYSIS 

Probe Structural Analysis 

The probes are supported in the flow by a supersonic wing. Figure 3 shows 6he 

overall wing set-up near tlie nozzle, where tlie static pressure probe is shown in its testing 

configuration. The forces on the probes are illustrated in figure 4. The cloniinant load 

tlie probes experience is the fluctuating lift force due to the turbulence of the jet, flow. 

This lift force is considered to be tlie cause of previous probe failures. Tlie probes are 

sufficiently supported by tlie wing and tlie lorigit uclinal loading is therefore neglected in 

the calculation. The probe is modeled as a siiiiply supported cantilever beam for the 

analysis. Tlie perturbation velocity is estimated to be 15 percent of the mean jet velocity 

when the probe i s  placed in the jet shear layer. When the probe is placed along tlie jet 

centerline, near tlie nozzle exit, a value of 1 percent or less is typical. This perturba.tion 

velocity establishes tlie niaxinium lift force on the probe surface, determined from:[6] 

where A,, is tlie normal area of the probe tlie perturbation velocity impinges upon. Tlie 

maximuin stress a probe experiences is det,ermined from: 
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where M,,, is the inaxinium bending moment the probe experiences due to the applied 

force, FPp. The total iiioiiient of inertia of the cross-sectional area of tlie probe is Ittot ,  antl y 

is the distance from the probe neutral axis, which in this case is t,lie probe centerline. The 

calculated inaxiniuiii stress is compared to tlie allowable bending stresses of the probes 

at the temperatures expected. This analysis provides an iiidication of a specific probe 

design's structural integrity under the expected test conditions. 

Total Temperature Probe Heat Transfer Analysis 

A heat transfer analysis of the total temperature probe is performed to explain the 

effect of the cooling system on thermal response. The total temperature probe is illustrated 

in figure 5 ,  and the probe tip is illustrated in figure 6. Note that the tlieriiiocouple leads 

inside the slieatli are surrouritled by a powdered inagnesiuni oxide core. Figure f defines 

tlie relevant temperatures and pressures in the analysis, and also a possillle temperature 

distribution along tlie centerline when the coolant is turned on. Tlie extent of tlie water 

coolant's reach is evident from this temperature distribution. The probe face t.emperat ure 

is 2'F antl tlie probe exterior teinperature is T,,,.,. The teiiiperatures of tlie chamber 

(interior) foward wall, rear wall, and cylindrical sidewall are 2'1, T3, and T4, respectively. 

The bead temperature is 2'2. The temperature of tlie thermocouple leads where the coolant 

impinges the backside of tlie rear wall is T5. Tlie water coolant temperature is T'. Three 

openings in tlie probe expose tlie thermocouple bead to the jet: the fowarcl opening allows 

flow to impinge upon t,lie bead, and the two vent holes control the mass flow through the 

probe. The local static pressure inside the cliaiiilwr, Pc, arid out side 1,Iic vcnt. holes, PI, ,  is 

less tlian the probe face pressure, PF, wliicli is assumed to be the stagnation pressure of 

tlie flow behind the shock. The resulting pressure difference drives t,lie low Mach nuniber 

flow through tlie chamber as shown in figure 7. 

The lieat transfer analysis is based upon placing a control volunie around tlie ther- 

mocouple bead of tlie probe, shown in figure 8. For an isentropic process it is known that 
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the total temperature across a sliock does not change. By neglecting the coiivective heat 

transfer to tlie probe interior walls it is assunietl the stagnation st reaniline inipiiigirig upon 

the bead will have the desired freestreaiii total temperature. The key assuiiiption is that 

the chamber in which tlie thermocouple bead is placed c a n  be treated as a blackbody. 

The conductive heat transfer takes place between tlie two cliroiiiel-aluiiiel leads and tlie 

thermocouple bead. Tlie analysis assunied that 1-D conduction exists and neglected any 

convection that was occuring across the leads while in the probe cliaiiiher . The conductive 

heat transfer is determined froin:[i’] 

(3) 
Ah(T2 - T5) 

I; qcond = 

where IC5 is the conductive heat transfer coefficient of the thermocouple lead being analyzed. 

The cross-sectional area, A ,  o f  the lead is 0.000078 i n 2 ,  and the length, L, of the lead from 

the thermocouple bead to location 5 is 0.1507 in. T5 is dependent on whether the probe 

coolant is turned on or off. If the coolant is turned on, then T5 is assuiiiecl to be equal to 

T6, which is 80°F. This assumption was based upon the ability of the iiiagnesiuni oxide 

core, at location 5 ,  to adequately insulate the leads from the high temperatures. If the 

coolant is turned off, then T5 was assumed to be equal to T,.,.f, deterinined from the 

infrared sys tem. 

The radiative heat transfer is calculated by using shape factors, FzJ ,  where tlie i t h  

subscript represents tlie coiiiponent from which radiation is leaving, ant1 the j t h  subscript 

represents the component 011 which radiation is incident. The analysis assuiiies the geoai- 

etry of tlie prc)lw can be treatctl as four siiiiplificd conipoiietits, shown it1 t i p i r e  9. ‘l’lie 

analysis considers the radiation between the bead and the chamber consistsing of interior 

foward wall, rear wall, ant1 cylindrical sidewall. Tlie three openings are t reatecl as part of 

the respective walls (i.e. not, included), and it is assumed that the local flow temperature 

is equal to the wall surface temperature. The shape factor analysis for the foward and rear 

wall with the tlieriiiocouple bead is modeled by coaxial parallel disks.( 71 Tlie reciprocity 
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equation is: 

where A is the area of t.he component, being analyzed. 

followiiig equation is obtained: 

Froin the suiiiinat,ion rule, tlie 

These relationships are used to determine the shape factors presented in figure 9. 

The lieat transfer o f  t,he t.lierinocouple bead due to the radiation affects from each 

component is cleterininecl from:( i ]  

where u is the Stefan-Boltzmann constant. To simplify the analysis T,,,f was assumed 

constant along the uncooled portion of the probe, regardless of whether the coolant was 

turned on or off. Neglecting conduction between the exterior and interior walls, TsIL,.f 

was assumed equal to 7'4, and TF was assumed equal to 7'1. The infrared system however 

did not detect T F .  The flow is assumed to be stagnant in the region ahead of t,he probe 

face, which is mocleled as a solid disk for tlie radiative analysis. It is assuined itliere is no 

convective heat transfer in this region. The recovery temperature, T,,,, was equal t.o TF 

and is calculated froin: [ 81 

where Ty and Toy are the local static temperature, and the local stagnation temperature of 

the flow behind the shock, respectively. The recovery factor, r, is taken as tlie cube-root, of 

tlie Prandtl nuinher, since the flow is considered t,o be turbulent. The teniperature of all 

tlie components, except. that for the interior rear wall, 2'3, are known. It was assuiiied that 

the magnesiuni oxide core does not allow for significant heat transfer between locations 3 

and 5 .  Therefore, T3 was assumed equal to 7'4. 
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Tlie convective lieat transfer to the bead is determined from tlie energy equation, 

wliere the energy eiideriiig the control volume equals tlie energy leaving the cont,rol volttilie 

such that: 

wliere qcv is tlie convective heat transfer into the bead, aiid qr is tlie net, radiative heat 

transfer leaving tlie bead. The conductive lieat transfer leaving the bead t.lirough the 

alumel aiid cliroiiiel leads is denoted by qAcd and qCcd7 respectively. 

The overall heat transfer analysis at. the therniocouple bead has been simplified coil- 

siderably in an at tempt to determine the conducbive and radiative effects of the coolant 

contribut.ing to the lower temperature measurements. The assunipt*ions pertaining to low 

thermal conductivity of the iiiagnesiuiii oxide core is oiie such simplification. Tlie coli- 

vective heat transfer is considered tlie least accurate since it is affected by the errors in 

siniplification of both tlie conductive and radiative modes. A more detailed heat, t*ransfer 

analysis is difficult since tlie temperature and velocity of the flow inside the chamber can- 

not, be accurately determined. The error between the jet temperature antl t.he temperat.ure 

measured at the nozzle exit is deterniiiied froni: 

antl the error between the irncooled measureiiients and tlie cooled measurements is deter- 

mined froiii: 

Determination of Local Jet Flow Velocity 

The measured data iiiust. be reduced due to tlie presence of the bow shock upstream 

of the total pressure probe tip. The total pressure probe reads the pressure behind the 
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a.) Tlie shock wave is locally normal to the stagnation st,reaiiiliiie a t  tlie 
point where the streamline crosses the bow shock. Tlie probe is pardlel 
to the flow. 

b.) The particles following the stagnation streaiiiliiie are brought. to rest 
isentropically in the subsonic region behind the shock. 

bow shock, riot the desired freestream t.otal pressure. The following assumpt.ions are macle 

in deteriiiiiiing the Mach iiiiiiiber of the undisturbed stream ahead of the shock:[9] 

These assumptions serve as the basis for the isentropic, and normal shock relationships t.liat 

result in tlie supersonic Rayleigli Pitot-Tube forniula: 

where Poy is tlie stagna.tion pressure behind tlie noriiial shock, and P, is tlie freestreaiii 

static pressure. 'The freestream stagnation t.eniperat.ure is To,. Foy,Pz, and To, are deter- 

mined experimentally. Tlie local ratio of specific heats, y, and the local speed of sound 

are determined from T,. T, and the local freestream Mach nuniber are calculated through 

an iterateion program which applies these known quantities to the Rayleigli Pit,ot.-Ttibe 

formula to account for tlie variation of the specific heat ratio y with temperature. Tlie 

local velociby is tleterriiined as the local Mach tiumber times the local speed of sound (a) ,  

determined from: 

a = (yRT,)"2 

. The error lietween the t,heoreI.ical velocity and tlie calculated velocity is det,erinjiied from: 

V j e t  
(13)  

and the error between the calcrilated velocities using the uncooled and cooled t,emperature 

data is determined from: 
( VurLcool - Vcool )loo 

Kt ncool 
Error = 

EXPERIMENTAL APPARATUS AND APPROACH 
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Test Facility 

Tlie experiments were conducted in tlie NASA-Langley Siipersonic Jet, Noise Facility. 

Tlie floor plan of tlie test- ccll is shown in figure 10. The test cell is approximately 26 ft.  

wide by 100 ft. long by 23 f t .  high. Air pressure and temperature can he intleIxnclent.ly 

controlled either manually or by computer. Tlie air pressure was accurate to witliiii 0.2 

psi. The temperature was accurate to within 65°F at a jet temperakure of llOO°F, and 

within 20°F at. the design teniperature of 2000°F. Tlie working pressure in {,lie lmrner) 

during fuel burning, is liiiiitecl to 140 psig. The model air system can supply dry air at 

a niaxiiiiuiii flow rate of 25 lbni/sec to the burner. The propane flow rate is controlled 

manually. The maximum propane inass flow rate is 0.45 lbm/sec. 

The overall experiiiiental setup is shown in figure 11. A convergent-divergent water 

cooled nozzle was used, as shown. The nozzle exit diameter is 3.54 inches. The nozzle is 

designed to produce an exit Mach of 2.0 at, 2000°F exit total teiiiperature. The axes of 

the nozzle are sliowii in figure 12. All thermocouples used in tliis experiment, are type K 

chromel-aluniel. Within the burner are two open bead 1 lieriiiocouyles located 180 degrees 

apart, froin each otlier OJI tlie flange that connects the burner to the nozzle, sliowii in figure 

11. These thermocouples provide the burlier stagnation teniperature readings. One hurner 

thermocouple is obtained by the system coiiipiiter, while tlie otlier is obtained by a digital 

cli splay. 

System Operations 

A three di~~ic~isiotiitl tra.versc. rig positions tlic prohe anywhere i n  t I I C  j d  pliiliic. ‘I’lic 

placement. of the prohe can lie controlled either ma.nually or with a coinpn ter. The probe 

is moved by three 200 pulse/revolution stepping mot ors. Three bitlirectional totalizers are 

used to read the location of the probe. A digital voltmeter is used in both t,lie total and 

static pressure experiments to read tlie output from the transducers. 

Tlie pre- test, preparation involved leveling and aligning the traverse wi tli the nozzle 
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centerline axis using an alignment laser, placed witliin t,he nozzle. The laser light coincided 

with the centerline of tlie jet nozzle. A flat black duiiiniy probe was  located on t.lie wing to 

align the traverse rig with the jet cent.erline. Tlie laser light appears on t,lie tluiiiiiiy probe 

whenever t,lie probe is 0 1 1  tlie jet. centerline. Tlie traverse is aligned by moving t.lie probe 

in tlie X2 iiiiniinuiii to X2 ~iiaxiiiiuiii centerline directions, and siniultaneously adjastiiig 

tlie height of tlie rig until tlie laser light appears on the dummy probe t.liroughout this X2 

movenient. Tlie pressure probes were also calibrated every iiiorning prior to testsing. 

Supersonic Probe Support 

The wing support, has a diamond shaped cross-section and is coniposcd of st,ainless 

steel. Tlie wing cross-section can be seen in figure 3. The wing is 27.500 in.  long by 

3.875 in. Tlie leacling edge is sharp, so as to 

maintain iiiiiiiiiiuiii profile drag while in the jet. By minimizing the drag on the wing, 

tlie deflection of tlie wing is niininiized, and tlie location error of the probe, inside the 

jet plume, is niiiiiiiiizetl. The wing was initially designed for cold flow tesling[lO]. Water 

coolant channels were built into tlie wing for t,lie hot jet testing. The cooling system, 

shown in figure 13, provides water for tlie wing, wing tip, and probe. Tlie port.ion of the 

wing leading edge exposed t.o t.lie jet plume was niodified prior to phase 2 of t.esting due 

to tlie severe heating it encountered. Tlie upper surface of tlie wing exposed t80 the flow 

is shown in figure 14, the lower surface of the wing exposed to the flow is shown in figure 

15. Both photographs were taken after the filial test. run. The affected leading edge area 

was removed after phase 1 and two water coolant. tubes, copper tuhe as tlie leading edge 

and stainless steel t.ul,e Iwt.ween t.he wing m t l  copper tube, were installed. The leiitling 

edge initially coiisist,ed of a copper strip welded to tlie front of tlie copper tube, iiiacliined 

to matcli tlie sharp leading edge of the wing. This copper strip failed to remain at,t,aclied 

to the copper tube, resulting in  tlie copper tube becoming the leading edge of the exposed 

wing. This liacl no apparent. affect upon the results. A Zirconiuni flame spray was applied 

on tlie surface of the wing exposed to the flow. 

wide by 0.719 in. maximum thickness. 
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The severe temperatures also affected the wingtip, making it necessary to determine 

an adequate wingtip design capable of sustaining the expect.erl high temperatures. Three 

different wing tips were used in this experiment and are sliowii in figure 16. The original 

wing tip built, wit,li the wing (WNGTPl)  is 3.875 in. long by 1.000 in. maxitiiuiii widt,h 

by 0.719 in. maxiiiiuiii t,liickness. It is composed of stmainless steel with a Zirconium flame 

spray applied to its surface, and is not, cooled. A thermocouple was installed a.pproxitnately 

0.0625 in. from the leading edge. WNGTPl was tested during phase 1 of t,est.ing. The 

wing tip tested throughout, phase 2 of testing (WNGTP2) is composed of stainless steel 

with a 0.125 in. O.D. (0.0625 in. I.D.) water coolant tube running into the back, going up 

to within 0.0625 in. the leading edge. WNGTP2 is 3.625 in. long by 1.000 in. iiiaxiiiiuizi 

width by 0.719 in. niaximuni t,hickness. The tliird wing tip testred (WNCjTP3) is composed 

of carbon-carbon with a silicon carbide coating, and is not cooled. WNGTP3 is 3.250 in. 

long by 1.000 in. maxiiiiuiii width by 0.719 in. iiiaxiniuiii thickness. WNGTP.3 was Ixdt to 

evaluate the feasibility of using carbon-carbon for future wings to be tested at,, and above, 

3000"F, and also as a hackup to WNGTP2. The leading edge on WNGTPl is sharp, 

while the leading edges on WNGTP2 and WNGTP3 are rounded. This rounding is clue to 

nianufacturing coiisiderabions and did not affect the results. The leading edge of WNCiTP2 

was rounded to accomodate the cooling tubes, yet provide coolant as close to tlie leading 

edge a s  possible. It is assumed that if a high enougli niass flow rate is achieved th-ough 

WNGTP2, the heat- on the blunt. leatliiig edge will be adequately clissiyated. WNGTPS 

requires that no sharp edges are exposed to the flow, to prevent, fracture of t.he coat,ing 

and core. 

SUPERSONIC PROBES 

Were it is applicable, the mass flow rate of coolant. water through tlie probes was 

determined using a stop watch and a nieasuring glass, see Table 1. All the probes are 

manufactured from AIS1 Type-347 Stainless Steel tubing. The four water cooled supersonic 
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probes tested in these experiments are shown in figure 17. The probes are, from left to 

right: CTP2, CTP3, CSP2, and CTT2. The designat.ion of NCTT2 is the CTT2 probe 

with the coolant turned off. Uncooled probe diameters of 0.062 in. and 0.093 in. for 

pressure, and 0.125 in. for t*eniperature were used in previous experiment,s up to 900°F. 

For the previous experiiiientps t,he probe to nozzle diameter ratios were 0.035, and in the 

present experiiiient the prolw tlianiet.ers was iJicreasetl sricli that, this ratio is 0.053. The 

increase in  this ratio is necessary to accomodate blie cooling syst.eiii incorporated in to t,he 

probes. NCTPl and NClSPl were destroyed during the previous tests. 
# 

Total Pressure Probe 

CTP2 and CTP3 are used in phase 1 of the experiiiieiit to determine which cooling 

system design is to be used in phase 2. Difficulty was encountered in the manufacturing 

of the probes. The 0.11’75 in .  I.D. of the out,er tube for CTP2 provides a small volume, 

0.397 in.3 with which to install a cooling system. CTP2 utilized the unsymnietric cooling 

design which has a cent,er pressure tube, surrouncled by four water coolant tubes. C!TP2 is 

illustrated in figures 1, and 18, and is shown in figure 17. Two iiilet water t,uI,es extend up 

to the tip of the prohe, while two outlet, water tubes are located in the rear of t.he probe. 

This is acknowledged to be t.lie weaker of tlie two designs due to the unsynimetric cooling 

and smaller coolant volume resulting froin the additional internal tubing. The five tubes in 

CTP2 are connected to t,ygon tubing halfway through the wing. The pressure transducer’s 

linear range is 200 psia. 

Even though the annular cooliiig design is assumed to be the better of the two designs, 

tlie interior dimelisions are siiiall enough to raise conccrns as to whether sufficient. water 

cooling could be supplied. Stock tubing with an initial wall thickness of 0.035 in. was 

lmred iiiitil a wall thickness of approxiniately 0.015 in. was achieved. The divider tribe 

was also bored, resulting in an average wall thickness of 0.0125 in. The inbernal volqne 

of CTP3 is 0.935 in .3 ,  over twice that for CTP2. CTP3 is illustrated in figures 2, and 19, 

aid is shown in figure 17 after testing. A n  X-ray of CTP3, shown in figure 20, provides 

b 
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an indication of how thin tlie probe outer wall is, and also sliows tlie position of the 

installetl therniocouple i i i  tlte reservoir iisetl to ineasure t lie coolant teiiiperat itre <>xi( iiig 

the probe tip. This thin outer wall thickness raised concerns as to whether tlie structure 

coulcl wit listand the expected stresses. 

The water coolant, is delivered to tlie tip of the probe through a 0.1086 in. O.D. 

(0.0960 in. I.D.) divider tube. A 0.060 in. O.D. tube inside tlie divider tube serves to read 

the stagnation pressure of flow beliiiid tlie how shock. The backside of tlie cap serving as 

the probe tip was curved to turn the flow of coolant water towards the reservoir. Tlie base 

of the 0.187.5 in. probe outer tube is attached to a 0.500 in. tube that acts as a pressurized 

water reservoir. The reservoir concept contributes to the cooling of not only tlie probe, 

but also tlie surrounding wing and wingtip. Thermocouples located inside the reservoirs 

of all of the probes measure the probe exit water temperature. The reservoir design is 

incorporated into CSP2,CSP3, and CTT2. 

Static Pressure Probe 

The water cooled static pressure probe utilizes the annular cooling metliocl. The 

fititlings of Pickney [ll] were tised for the design of t3he static pressure probe. Tlie probe is 

illustrated in figures 21 antl 22, and seen in figure 17 after the experiment was conipletecl. 

The sloping of the probe tip to a point, along with the small diaiiieter static pressure 

ports, posed a serious manufacturing problem to the annular design. A solid steel cylinder 

was drilled and lathed to serve as the tip, and was fit and brazed to the 0.1875 in. outer 

tube. The foward component, of CSP2, shown in figure 23 prior to the attacliiiient to the 

probe outer wall, has a 0.060 in. O.D. center inlet water tube antl the four smaller 0.020 

in. O.D. pressure tu1)cs. Tlie water sprays tlie back of  tlie tip and p r c m d s  towards the 

reservoir. The pressure tribes have been installetl into the pressure ports, and 1 lie excess 

portion of the pressure tubes is visible in this photo. The pressure tuhes are hazed  to 

the center tube, and are connected to a single 0.1250 in. tube once inside the reservoir. 

Figure 24 shows a magnified photo of the pressure ports for CSP3, detailing the connection 
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of t.lie pressure tubes and the probe tip. The joint between t,lie t,wo components of t,he 

probe is also visiLle iri f.liis figure. A n  X-ray of CSP2, shown in figure 25, sliows the ;actual 

internal geometry of the probe. The thickness of the foward components is of iiit erest from 

a structral point of view, especially since NCSP1 failed during one of the previous tests. 

The pressure transducer used for t,lie static pressure probe has a linear range o f  50 pia.  

Total Temperature Probe 

The NCTT1 and CTT2 tlieriiiocouple oiit,piit is read by a digital t.hernioniet.er. CTT2 

incorporated the annular cooling metliod up to, but not beyond, the t.liermocouple bead 

inside the probe, and is illustrat.ed in figures 6, 7, and 26. CTT2 is sliown in figure 17 after 

the experiment was coinpleted. The unassemlled interior components of CTT2 are sliown 

in figure 27. The placement of the thermocouple bead, sealed from the coolant, water, was 

the most challenging manufacturing aspect of tlie total temperature probe, along wit.li tlie 

drilling of tlie two vent holes. The outer tube consists of a solid cylindrical rod,  0.1875 

in. O.D. bored, and counter bored, t,o hold both the  annular coolant system and the 

ther~~iocouple. The therniocouple location is such that the bead reds inside the 0.0625 

in. cliaiiiet,er chamber while t,he thermocouple sheath is wedged t,ight.ly iiit,o t.lie tapered 

section. The t,hermocouple sheath is vacuuiii brazed into place using a h a z e  material 

composed of 82 percent Gold and 18 percent, Nickel. This process involved first builtling 

several yrotrotypes and deterniining whether the bead could be vacuuiii hazed.  X-Rays of 

all the prototypes and the filial product are full scale and were used in the manufacturiiig of 

the probes. The therniocouple bead could not, have been properly locat,ed for t,he hazing 

to occur without the use o f  these X-rays. After the brazing was coiiiplet.ecl, X-rays were 

again used to locate the f.liermocouple for drill; rig tlie two vent holes. During the drilling 

of the vent holes the drill bit. broke off in the second hole. This resulted in a t.aperecl vent 

hole, wit.11 a niininium 0.010 in. (0.020 in. niaxitiium) diameter. This is nssunied to be 

insignificant. since the iiiiiiiniuni vent hole opening is still 0.010 in. 
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Infrared measurement 

, 

Phases 1 and 2 of testing utilized ail infrared scanner, wi th  an intliuni antinionitle 

(InSb) photovoltaic detector, for tlieriiial visualization. The detector has a sped ral range 

of 2 - 5.6 iiiicroiiieters antl is cooled by licluitl nitrogen. The detector, and clisplay t init ,  

is shown in figure 28. The images appeared on a display unit wliicli operates at the same 

rate as the camera. Tlie tlebector scan rate is convert8etl to a TV scan rate, for viewing on 

a color iiionitor. This systeni served as a means of deterinining how the prolies reacted to 

tlie elevated teniperat, ures. 

Phase 3 of testing iitilized a high resolu ion infrared syst,eni that provided t,lie probe 

surface temperature along the length of tlie probe. Tlie amplitude resolut,ion is capalile 

of resolving 256 gray scale levels. The infrarercl system has two spectral ranges of 3-4 

iiiicroiiieters and 8-12 iiiicroiiieters and was fitted with a 3X telescope. A 1 in. aperture 

blackbody was used as t.lie temperature reference. 

DATA COLLECTION 

Data was collected hy computer in a n  ensemble fashion for phase 1. This prevented 

the liigli temperatures from damaging tlie probes, wing, and WNGTP 1. This also provided 

some insight, into tlie affects of high temperatures on the wing and probes. An  example 

of how tlie ensemble data niethod was performed is provided for a centerline r u n ,  using 

WNGTPl.  A computer program moves tlie probe to a new location outside the flow, 

directly above a data point to be tested. Tlie probe is then nioved to a data point on the 

centerline. After allowing a specified arnouiit of time for the probe to reach equilibririm, 

data is collected. The t lier~~ioconple located ill  the leading edge of WN(iTP1 1irovitlc.s 1 lie 

critical teiiiperature reading that initiates the iiioveiiienta of the probe out of tlie flow, t o  its 

previous location. This critical temperature is the temperature at t lie leading edge antl is 

set for 1400"F, approximately 200°F helow tlie teiiiperature at wliicli the wing surface will 

begin to sustain visible damage. If the required number of data readings is not, collected, 
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t,lie program will allow several seconds for the wing to cool, outside t.lie flow. Once a cool 

temperat ure of 500°F is r e d  by tlie leading edge t.lierniocoriple, t,lie wing will iiiove Imck 

to the previous dat,a point and continue collecting data. This continues unt.il once again 

tlie critical temperature is reached and the wing iiioves out of the flow. This process is 

repeated until all the specified data ensembles for that point, are collected. The probe then 

moves to a new posi thi  outside of the flow, ant1 repeats this data collection process for 

the new data point. The total ainouiit of ensenible readings for a data point is eqiiivalcnts 

to two seconds of continous data collection. 

Data collection at. 900°F and 1500°F were cont,inous for phase 2. Tlie cooling of the 

probe, antl wing, eliiiiiiiatetl tlie need to iiiove t.lie probe out of t,lie flow as in pliase 1. The 

probe reiiiained in the flow unt,il all the data readings, for all t.he data point,s, had been 

taken. However, the collection of data at 2000°F was riot continous. The probe, from a 

position outside of the flow, moves to a data point aiid conbinously collecbs all tlie data 

readings for that point. Tlie probe then moves t,o the previous positioii outside the flow 

to cool off before moving to the next data point, antl continue the process. 

RESULTS 

A tot,al of 26 test. runs were conducted for phase 1. CTP2 was tested in t.liree runs, 

on tlie jet centerline reaching a maxiilium teniperature of 1200"F, shown in figure 29. In 

this infrared photo CTP2 is detected by the detector, and is cooler than the wing. The 

infrared scanner was set to cover a full scale range of 284°F to 1220OF; the liglit.er gray 

scale in figure 29 correspontls bo hotter teiiipern tures. The nielting of (,lie tygoii tubing on 

the third run terminated the testing of CTP2. CTP3 was tested up  l o  a temperature of 

1600"F, where tlie limiting factor became tlie high teiiiperatures on the wing antl wingt>ip. 

Figure 30 sliows the infrared results of CTPS at. 2600°F. Coinparing figure 30 to 29, it, is 

seen t.hat CTPS is cooled well enough such tliat it was not. detected by the infrared caiuera. 

These results illustrate tlie superior cooling of tlie syniinelnric annular cooling design over 
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tlie unsyminetric four tube cooling design. Of even greater significance was t lie fact t 1ia.t 

CTP3 did not experience any structural claniage. Tlie 0.015 in. outer t.ube wall  I liickness 

was proven to he structurally sound in  this respect. NCTTl was also tested during tliis 

phase to deteriiiine the liiiiit of the uncooled design. Tlie result was that NCTTl was 

tested up to 1600°F and suprisingly sustained t liese temperatures without incident. Tlie 

iiietliocl of collectiiig data for NCTTl is the saiiie as that used for pliase 2 at 2000°F. 

Figures 29 and 30 also provide a good indication of the heating the wing antl wingtip 

sustained. During tliis pliase of testing the wingtip antl the exposed p o r t h i  of t lie wing 

experienced temperatures as high a.s 1450°F. Water cooling systems were incorporated into 

tlie wingtip and wing leading edge to counter t liese liigli temperatures in tlie reiiiairiing 

test runs. 

A total of 109 test riins were conducted during the second phase of experiiiientation. 

The traverse was aligned once again and leveled using the same methods as in phase 1. 

Tlie wing, nozzle, and probes were painted with a high temperature flat black spray paint 

to provide a uniform liigli emissivity of about 0.95. The use of the black paint appeared 

to have no affect on the images obtained from the low resolution infrared systeiii. Tllis is 

attributed to the poor resolution of tlie systeiii in the 3-5 tiiicroiiieter band wlieii iiiiagiiig 

surface temperatures. WNGTP2 was used throughout pliase 2 of testing. Damage in the 

form of small cracks was occuriiig along tlie leading edge of WNGTP2, but to such a small 

degree as not to warrant concern. 

Total Pressure Results 

Tlie CTP3 readings along t,lie centerline at. !lOO"F, 1.500°F, and 2000°F are shown in 

figure 31. As t lie t4emperat.ure increases the peaks in the pressiire become less proiiouiiced, 

indicating that the nozzle is approaching itqs design condition of 2000°F. Tlie nozzle is 

designed to have a unique wall boundary, and a corresponding unique ratio of specific 

heats, y, to yield a Mach 2 exit. distribution at 2000°F jet teiiiperat ure. Jet. teniperatures 

that are not 2000°F are considered to be off-design conditions, and Mach 2 at. tlie exit 
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becomes an approximation. This is clue to the variation in y as  the teinperabure varies. A 

value of y that is not tlie same as that used in tlie design yields ail ofT-desigii coiidil.ion. 

The offset of as niucli as 2 psi in figure 31 is due to this off-design condition. 

Several tot,al pressure readings at 900°F are conipared in figure 32. The NClTPl data 

is froiii tlie olcl test runs and is used to check tlie data. obtained using CTP3. Tlie results 

obtained froni tlie old tests closely match those obtained for these experiiiieiits antl indicate 

that CTP3 was functioning properly. Any differences may be attribut,ed bo t,lie affect. of 

tlie coolant and/or the burner operation. The phase 1 and phase 2 total pressure readings 

at 1500°F are coiiipared in figure 33. The results obtained froiii t.lie phase 1 tests are equal 

to those obtained for the pliase 2 tests. The repeatability of data in figure 33 intlicabed 

that tlie traverse rig was properly aligned along the jet centerline tlirouglioiid the phase 1 

aid phase 2 testing. 

The total pressure data a.t tlie nozzle exit. planes are compared along each axis for all 

three temperatures test,ed in figures 34 and 35. Tlie data indicates that little difference 

exists in the initial jet exit, boundary layer thickness for a wide range of operating jet 

total temperatures. Tlie +X3 exit plane shear layer data does show inore dispersion than 

the +X1 data. A comparison of the +X1 and +X3 exit plane total pressure results at. 

900"F, lrjOO"F, antl 2000"F, is shown in figures 36, 37, and 38, respectively. The reacliiigs 

in the +XB exit plane are offset hy approximately 0.070 in. in the jet shear layer at. t,lie 

t.emperature of 1500°F a n c l  2000°F. Tlie offset. is less at, 900°F. 

The good repeatability of the centerline data of figures 32 and 33 clearly indicate that, 

prolie positioning with the remot.ely controlled digital traverse can be done wi th  great. 

precision. However, the radial data at tlie jet- exit indicat,es a definite effect. het,ween 

the +X1 a i d  +X3 coordinate directions. It. is iniportant- to note that there is a large 

difference in the aerodyiianiic loacliiig of the support wing as tlie probe approaclies t,he 

shear layer along each respective coordinate directmion. Along +X1 the wing loading reninins 

symmetric, whereas along + X 3  it is unsymmetric. Tlie non-symmetric loading along +X3 
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could be a major factor producing the observed affect. Since tlie sliea,r layer is relatively 

tliiii compared to the probe diameter, only small probe and wing deflecikms a r c  rcqiiirctl 

to produce such an effect. The +X3, -X3, and +X1 data comparisons at 1500*F in figure 

39 do not eiitirely confirni tliat. this is the only explanatlion siiice the t X 3  arid - X 3  data 

are riot eqiially offset, fro111 tlie +XI data which is presumed to be unaffected. 

Static Pressure Results 

The phase 2 centerliiie data obtained for CSP2 is shown in figure 40. The niininiuiii 

and maximum static pressure local ions, witliiii 7 diameters of tlie nozzle exit, mat cli closely 

for the t h e e  temperatures tested. However, further downstream of the nozzle this is not the 

case. This is due to tlie differelices in the sliock cell length between tlie three cases resulting 

from the differences in jet temperature. The results show tliat as the nozzle approaches its 

2000°F design point., tlie sliock strength of the waves in the plume diminish. The 900°F 

results beyond X / R  = 20 appear irregular. However, tlie data up to X / R  = 20 from 

tlie jet exit is in good agreement with prior uncooled pressure nieasureiiients, as sliown 

in figure 41. The +XI and t X 3  exit plane static pressure results at 900"F, l500"F, and 

2000"F, are shown in figures 42 and 43. 

Total Temperature Results 

The total temperature reading obtained by both the uncooled and cooled probes was 

less 181ian the reading chtained froiii the Iiurner t81iermocouples. The cooled probe clai a 

understandably was affected by the coolant, however, the uncooled probe tlat a errors in- 

dicated tha t  energy loss froin the t herinocoiiple head also existed, thoiigli not as  great. 

A total of four runs were perforiiied with the probe coolant on (CTT2), and the probe 

coolant off (NCTT2), through a teniperatnre range of 900°F to 2000°F. This was ail at- 

tempt to better understand tlie lieat transfer process contributing to tlie lower t eniperature 

iiieasureiiient s from t, lie pro be. 

The centerline da ta  obtained for the water cooled probe CTT2 at, all three t,empera- 



tures tested are shown in figure 44. These results show that, t lie nieasured teiiiperatures are 

below the jet temperatures olAainecl from the burner therniocouples. The iiieasiirerl t ciii- 

peratures are approximately 60" F, 220" F, and 400°F below t.he assullied jet teiiiperat ures 

of 900"F, 1500"F, and 2000"F, respectively. The error is shown to increase with iiicreasing 

jet tot a1 temperature. Such errors greatly effected the calculated ratio of specific heats 

and velocities, and slightly affected the calculated Mach nuinhers. The coinparison of the 

1500°F ceiiterliiie data obtained by NCTTl and CTT2 is shown in figure 45. Tlie NClTTl 

dat>a is approximately 70°F below the jet temperature, and the CTT2 data is approxi- 

mately 230°F below the jet temperature. This comparison clearly indicates that the use of 

cooling dramatically effects the accuracy of probe nieasurcnient . The difference between 

the uncooletl probe data, at the nozzle exit, and the jet, t eiiiperature is also evident. 

The CTT2 total temperature exit plane data are compared in figure 46 along t l i r x  1x3 

axis for all three temperatures tested. A comparison of NCTT2 and CTT2 in tlie +X3 

exit plane, at  900"F, is sliowii in figure 47. The use of coolant is again shown to produce 

significant deviation from expected jet total teniperat ures. 

The third test was attempted using NCTTl and WNGTP3. The starting teiiipera- 

ture was 900°F ancl was increased at increiiients of 100°F. NCTTl failed at 1600"F, and 

destroyed the wingtip in the process. The failure of WNGTPS prevented assessiiig the 

capability of using Carbon-Carbon as a material for future wing and wingtip designs. 

The fourt,li test, (phase 3) was performed using the high resolution infrared system. 

CTT2 was tested at 900"F, 1500"F, and 2000°F with the coolant turned on, ancl the coolanta 

turned off. Tlie surface teniperature of the probe was obtained for each of 4 liese cases ant1 

was used to deterniiiie the heat transfer process of the probe. The true effectiveness of tlie 

cooling system in each case is determined by this calibration. 

Tlie infrared result of NCTT2 at, 900°F is shown in figure 48, and the surface tem- 

perature distribution is estimated as given in figure 49 assuming a surface etiiiiiissivity of 

0.95 for the 8-12 micrometer range. The two lines along the centerline of the probe in all 
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tlie infrared pliotograplis define tlie region from wliicli tlie surface t.eniperat.ure dist.riI>u- 

tion is obtained, not the actual temperature of the probe. Tlie iniiiiniriiii probe surface 

temperature is approxiiiiately 350°F. The infrared result of CTT2 at 900°F is shown in 

figure 50, and tthe surfa.ce teniperature clistrilmtion is given in figure .5l. The niinii~~um 

prole surface teuiperat,iire is approxiina.tely 130" F. The const,anC surfa.ce teiiipera ture of 

the cylindrical sidewall, T4, wa.s est,iina.t.ecl a.t 600°F. The difference between 1,lie NCl'I'T2 

aid CTT2 ineasureiiients at t.he nozzle exit. is approximately 18"F, wliicli is an error of 

two percent. 

The infrared result of NCTT2 at 1500°F is sliown in figure 52, and the surface t,eni- 

perature clistribution is given iii figure 53. Tlie iuinimuiii probe surface teiiipera.t.ure is 

approxiinately GOOOF. The infrared result, of CTT2 at 1500°F is sliown in figure 54, and 

the surface temperature distribution is given in figure 55. The iiiinimum probe surface 

temperature is approximately 180°F. Tlie constant surface temperature of the cylintlri- 

cal sidewall, T. ,  was estimated at 1005°F. Tlie difference between the NCTT2 and CTT2 

iiieasureiiieiits at t,lie nozzle exit, is approxiinatrely 108"F, which is an error of eight. percent. 

Tlie infrared result of NOTT2 at 2000°F is shown in figure 56, ant1 t.lie surfa.ce t.eni- 

perature distribution is giveii in figure .57. The mininium probe surface tenipera.t.ure is 

approximately 840°F. The infrared result, of CTT2 at 2000°F is sliown in figure 58, and 

the surface temperature distribution is given in figure 59. The iniiiimuni probe surface 

teinpera.ture is approxima.t.ely 430" F. The constmalit surface temperatsure of tjlie cylindrical 

sidewall, 7'4, was estimated at 1350°F. The difference between the NCTT2 and CTT2 mea- 

surements at the nozzle exit, is approxiniat,ely 261°F, which is an error of fourt,een percent. 

The infrared caulera. was checked against, the ldackbody set. at. a reference t,ciripera.t.rire o f  

532.4"F. Tlie infrared system iiieasuretl a temperatiire of 533.4"F for this coiitlit.ioii, sliown 

in figure GO, within 1°F of what, the blackbody was set at, which is an error of a tei1t.h of 

a percent. 

The lieat, transfer analysis for the conductive, convective, aiid radia6ive niotles of each 
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case tested is presented in Table 2, along with other relevant data used in tlie analysis. The 

conductive heat transfer was approximately t h e e  tiiiies as great wit 11 the coolant t urnecl 

on than with the coolant turned off and is considered tlie major contributer to the lower 

temperature measurements. This result is heavily dependent, upon tlie assuniption I hat T5 

is equal to 7'6 when the coolant is turned oil. The ratdiat.ive heal transfer leaviiig the bead, 

wi th  the coolant turned on, is less than with tlie coolant turned off, assliming T'3 is equal 

to 7''. Therefore, the total lieat transfer crossing the thermocouple head control volume 

for tlie cooled case is significantly greater than the uncooled case. Applying conserv a t '  ion 

of energy to tlie bead, i t  is also seen that the convective heat transfer iiito the bead is 

greater for tlie cooled case than the uncooled case. Ideally, it is desired that little or no 

convective heat transfer exist with the liead, wliicli requires that the chamber flow velocity 

is nearly zero. Any increase in tlie convective heat transfer indicates that the chainher flow 

velocity is increasing and tlie measured temperature is decreasing. Both tlie cooled arid 

uncooled beads experience convective heat. transfer, t liough not as great, for the uncooled 

case. This may explain wliy the data obtained from tlie uncooled probes was also less than 

the jet temperature. Future experiments will require that any cooled total temperature 

probe used, is first- calibrated through the range of temperatures it is to experience 1.0 

accurately determine the flow total teniperature. Tlie analysis presented liere is siiiiylified 

considerably and serves only to define the major modes of lieat transfer that. result in lower 

temperature iiieasurenieiits by tlie probe when the coolant is turned on. Therefore, a more 

detailed model of tlie probe is reconiiiieridetl. The goal of tliis model would lie to olltain 

a relationship between tlie measured temperature, by the therniocouple bead, and tlie jet 

temperature though a range of temperatures and pressures tlie probe is to experience. 

Local Jet Flow Velocity and Mach No. 

A comparison of the jet plunie centerline velocity and Mach nuiiiber at the teinper- 

attires tested is sliowii in  figures 61 and 62, respectively, using the CYI"l'2 tcniperat tire 

iiieasurenients. Tlie 1500F centerline velocities and Mach nunibers ohtained using the 
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phase 1 NCTTl data, and the phase 2 CTT2 data, are compared in figure 63 and figure 

64. The CTT2 dat,a tciided to decrease the calculated velocity 150 f f / s  below the cal- 

culated velocity using the NCTTl data, or roughly a five perceiit error. In general, t.lie 

coolant affected temperatmure reading teiids to decrease the calculat~ed velocity, h i t ,  has 110 

significaiit, affect on the calculated Mach numbers. Future experiments will 1ia.w to account 

for this affect by calibrating t.he cooled t<otal temperature probe. 

The +X3 exit. plane velocity at. 900"F, 1500°F, and 2000°F are sliowii in  figure 65,  

using tlie CTT2 dat8a. This figure allows tlie coinparison of the calculated velocity with 

tlie theoretical velocity. From this tlie effect of the CTT2 data can be det.erminetl. Tahle 

3 presents these calculations along with the corresponding errors. As the teniperature 

increased so did tlie error in tlie calculated velocity. The velocit,ies calcula.t,ed using the 

CTT2 data hac1 a larger error associated with tlierii than those calculated using the NCTT2 

data. A comparison of tlie +X3 exit plane NCTT2 and CTT2 calculst,ions at  900"F, is 

shown in figure 66. Note tliat tlie calculated velocities using tlie NCTT2 data at. 900°F is 

rouglily the same as tlie if heoretical velocity. The +X3 exit plane calculated Mach ~iiinihers 

for all three teiiiyeratures tested, shown in figure 67, indicates that, the Mach nuiiil>er is 

insignificantly affected by these variations in t8emperature. This figure also shows that the 

nozzle was operating at Mach 2.0 at, the exit. 

System Considerations 

Tlie two burner thermocouples encountered difficulty in measuring the same teniper- 

alure during phase 2. A test was performed to understand the differences Iietween tlie 

two Iiurner ihermocouples and NCTTl.  The results of this run are shown in figure 68, 

Five measurements were made at  eacli jet temperature tested for all t liree thermocouples. 

The data presented in figure 68 represents tlie average iiieasureinenf of these tests. The 

assuiiied jet teiiiperat tire was read from the digit a1 display. Experieiice l i d  sliown that 

this was iiiore accurate than the coiiiputer at. determining tlie act ual jet teniperat we .  Tlie 

NCTTl measurement was shown to be lower than the jet temperature due to energy leav- 
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irig the tlieriiiocouple bead. The reading from tlie computer is considerably less than that 

for the digital tlisp1a.y. Tliis was found to be attributed t,o the delicate posiCioning of I.he 

thermocouple bead in the burner. The burner therniocouple lead was shortened arid t,he 

bead was moved slightly until the computer reading and the digital reading inat.ciiecl. 

These experiineiits represent, a research effort. to develop and test, wder  cooled probes 

that could accurately measure the pressures and t,eniperat,ures i n  a liigli-t,euiperat.~ire su- 

personic flow. Ideally, these experinieiit-s would be conducted with a nozzle atid facility t h t  

produced a shock-free purely laminar jet flow. However, the jet flow in which tlie probes 

were tested contained shocks and was turbulent. Instead of being calibrated in a pure 

eiivironinent,, tlie probes are calibrated in a facility that. models actual flight contlit.ions. 

The significance of this is not known and needs to be addressed. 

The effects of the nozzle coolant, on the jet exit temperature are not, known. Soiiie 

form of convective cooling may be occuring within the nozzle, thus decreasing the total 

teniperature. The propane injectors were found to forin cloh that frequent.ly discharged 

into t,he flow. This resulted in  jet t,eniperature variations beyond the control of the opera- 

tors. These and other factors are accounted for in the temperature tolerances estaklislied 

for the burner operation. 

CONCLUSION 

The goal of successfully testing a water cooled supersoiiic total pressure probe, static 

pressure probe, and total temperature probe at 2000°F has been accomplished. The cooled 

total and static pressure readings agreed will1 previcws i i i iccmlcd results. Tlie Iota1 Ieni- 

perature probe reading was found to be affected Iiy the water coolalit, and the extensive 

calibrations performed provided some iiisiglit int.0 these effects. The cooled probe had 

a greater rate of lieat transfer across the tlierniocouple bead control volunle than the 

uiicooled prole. This results in temperature measurements for the cooled probe that is 

considerably lower tliari tlie uricooled probe. The lower temperature nieasureiiieiits tended 
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to result in a calculated velocity that was significantly lower than theory. Further work 

needs to be done with the total temperature probe to fully understand the effects of the 

coolant system upon the temperature reading. 
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Figure 8. Thermocouple bead heat transfer analysis. 
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Figure 9. Thermocouple bead radiative heat transfer 
components and corresponding shape factors. 
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Figure 16. Wingtips utilized in experiment. 
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Total 
Press 
Probe 

Static 
Press 

Probe 

Total 
Temp 
Probe 

Acronym 

NCTP1 
CTP2 
CTP3 

NCSP1 
CSPS 

CSP3 

N C n l  
c n 2  

WNGTPZ 

Mass flow 
(I bmlsec) 

0.0026 
0.01 28 

0.0185 

0.01 as 

0.0650 
- 

0.0086 

Comments 

Uncooled probe from previous tests 
Four tube water cooling up to tip 
Annular flow cooling up to tip 

Uncooled probe from previous tests 
Annular flow cooling up to tip 

Annular flow cooling up to tip 

Uncooled probe from previous tests 
Annular flow cooling up to bead 

Water cooled wingtip 

Table 1. Probe classifications and applicable mass flow rates. 
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Jet Mach No.= 2.0 
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- 2000F 

A x i a l  P o s i t i o n  ( X / R )  

Figure 31. Measured jet centerline total pressures at 900 F, 1500 F, and 2000 F. 
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Figure 32. Measured jet centerline total pressure comparison at 900 F. 

54  
ORIGINAL PAGE IS 
OF POOR QUALITY 



c 

'C 

h . U l I l l L L L 1 - h  I I I 1 I 1 I I 1 L L L L u L u d u L  

Jet Mach No.= 2.0 
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Figure 33. Measured j e t  centerline total  pressure comparison a t  1500 F. 
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Figure 34. Measured +X1 axis total  pressures a t  900 F, 1500 F, and 2000 F. 
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Figure 35. Measured +X3 ax is  total  pressures a t  900 F ,  1500 F ,  and 2000 F .  
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Figure 36. Measured +X1 and +X3 axes total  pressure comparison at  900 F .  
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Figure 37. Measured +Xl and +X3 axes tota l  pressure comparison a t  1500 F.  
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Figure 38. Measured +Xl and +X3 axes tota l  pressure comparison at  2000 F. 
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Jet Mach No.= 2.0 
Jet Temp. = 1500F 

110 

+ X l  Axis  - - - - - -. 

12 

+ X 3  A x i s  
- - X 3  Axis  

- 
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Figure 39. Measured +Xl, +X3, and -X3 axes to ta l  pressure comparisons a t  1500 F.  

Figure 40. Measured jet centerline s t a t i c  pressures 
a t  900 F,  1500 F, and 2000 F. 
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Figure 41 .  Measured jet centerline s t a t i c  pressure comparison a t  900 F. 
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Figure 42. Measured + X l  ax is  s t a t i c  pressures a t  900 F,  1500 F, and 2000 F .  
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Figure 43.  Measured +X3 ax i s  s t a t i c  pressures a t  900 F, 1500 F, and 2000 F .  
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Figure 44.  Measured jet centerline to ta l  temperatures a t  900 F, 1500 F, 
and 2000 F. 
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Figure 45. Measured jet centerline total temperature comparison at 1500 F. 
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Figure 46. Measured +X3 axis total temperatures at 900 F, 1500 F, 2000 F. 
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Figure 47. Measured +X3 axis total temperature comparison at 900 F. 
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Probe 
:ondition 

900F 
NOH20 

900F 
H20 

1500F 
NOH20 

- ~~ 

350 1 6 0 7 :  

130 600 
I I , 
t 

Alumel 
conduction 

(BTUlh) 

0.171 

0.525 

Chrome1 ' Bead 
conduction radiation 

(BTUlh) (BTUlh) 

0.259 ~ 0.123 

0.785 0.113 

600 1 1005 1364 0.249 0.382 0.479 
I 
I 

1500F 180 1005 1256 0.802 1.225 
~~ __ - ~- H20 

_ *  

2000F 840 1350 1868 I 0.358 0.549 
NOH20 

2000F 430 1350 1607 1 1.041 1.590 
I 

H20 

0.303 

Bead 1% bead temp 
:onvection i error wl 
(BTUlh) ~ jet temp 

0.553 j 5.4 

I 
1.423 1 7.4 

2.330 16.3 

1.367 2.274 1 6.6 
I 

~ 

0.550 3.181 19.6 

Table 2. Water cooled total temperature probe 
preliminary heat transfer analysis. 
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Figure 61. Calculated jet centerline velocities 
at 900 F, 1500 F, and 2000 F using the ClT2 data. 
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Figure 62. Calculated jet centerline Mach numbers at 900 F, 
1500 F, and 2000 F using the CTT2 data. 
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Figure 63. Calculated jet centerline velocity comparison at 1500 F. 
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Figure 64. Calculated jet centerline Mach number comparison at 1500 F. 
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Figure 65. Calculated +X3 axis velocities at 900 F, 
1500 F, and 2000F using the C'IT2 data. 
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Jet 
total 

temp( OF) 

Jet 
static 

temp( O F )  

Ratio of 
specific 
heats,Y 

Speed of Theoretical Calculated YO 
sound velocity velocity error 
(W (W (fw 

900 304 1.39 1349 2698 2650 1.2 

Table 3. Calculated velocity error analysis. 
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Figure 66. Calculated +X3 axis velocity comparison 900 F. 
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Figure 67. Calculated +X3 axis Mach number comparisons 
at 900 F, 1500 F, and 2000 F. 
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Figure 68. Burner (nozzle) total temperature calibration. 
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